Potensi Bakteri Filosfer pada Daun Kubis untuk Mengendalikan Penyakit Busuk Lunak oleh Pectobacterium carotovorum pada Sawi Putih

  • Af’idzatuttama Department of Plant Protection, IPB University
  • Abdjad Asih Nawangsih Department of Plant Protection, IPB University
  • Kikin Hamzah Mutaqin Department of Plant Protection, IPB University
Keywords: biocontrol agents, Brassica rapa subsp. pekinensis, Chryseobacterium sp., Erwinia carotovora subsp. carotovora, integrated pest management


The Potentials of Cabbage Phyllospheric Bacteria as Biocontrol Agents of Soft Rot Disease Caused by Pectobacterium carotovorum on Chinese Cabbage

Soft rot disease caused by Pectobacterium carotovorum (Syn. Erwinia carotovora subsp. carotovora) is one of the important diseases on chinese cabbage. The bacteria produce pectinase enzyme which decompose pectin on the central lamella of plant cell wall. The infected chinese cabbage become rotted, watery, and slimy. One of the alternatives controls to overcome the disease is the application of biocontrol agent isolated from the phyllosphere of chinese cabbage. This study aimes to evaluate and to select the potential phyllospheric bacteria from cabbage as biocontrol agents of soft rot disease caused by P. carotovorum on Chinese cabbage. The phyllosphere bacteria were isolated from Cianjur, Tegal, and Bogor Districts. Phyllosphere bacteria were tested for their safety by the hypersensitive reaction and hemolysis type on blood agar. They were tested for their inhibition capability to the growth of P. carotovorum in vitro and to control the soft rot disease in vivo. Two isolates with potential control activity to the soft rot disease in chinese cabbage are TG11 and TG20. Based on the sequence of the 16S rRNA gene, isolates TG11 and TG 12 were identified as Chryseobacterium sp.


Download data is not yet available.


Alvarado ICM, Michereff SJ, Mariano RLR, Souza EB, Quezado-Duval AM, Resende LV, Cardoso E, Mizubuti ESG. 2011. Characterization and variability of soft rot- causing bacteria in chinese cabbage in north eastern Brazil. Journal of Plant Pathology. 93(1):173–181.

Barbin KB, Secretaria LB, Bayogan ERV, Lacap AT, Ekman JH. 2018. Efficacy of guava and mangosteen extracts in reducing soft rot (Pectobacterium carotovorum) in harvested Chinese cabbage. Acta Horticulturae. 1205:619–624. DOI: https://doi.org/10.17660/ActaHortic.2018.1205.46.

Benitez M, Benitez JKM. 2018. Potential postharvest botanical extract on bacterial soft rot of cabbage (Brassica oleracea var. capitata L.). Acta Horticulturae. 1213:619–624. DOI: https://doi.org/10.17660/ActaHortic.2018.1213.94.

Bernal GM, Cordova AI, Saucedo PE, Gonzalez CM, Medina MR, Suastegui JM. 2015. Isolation in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Veterinary World. 8(2):170–176. DOI: https://doi.org/10.14202/vetworld.2015.170-176.

Cui W, He P, Munir S, He P, He Y, Li X, Yang L, Wang B, Wu Y, He P. 2019. Biocontrol of soft rot of Chinese cabbage using an endophytic bacterial strain. Frontiers in Microbiology 10:1–12. DOI: https://doi.org/10.3389/fmicb.2019.01471.

Da Silva Felix KC, da Silva CL, de Oliveira WJ, de Lima Ramos Mariano R, de Souza EB. 2016. Calcium-mediated reduction of soft rot disease in Chinese cabbage. European Journal of Plant Pathology 147(1):73–84. DOI: https://doi.org/10.1007/s10658-016-0980-0.

Fahey JW. 2016. Brassica: Characteristics and properties. Encyclopedia of Food and Health. 469–477. DOI: https://doi.org/10.1016/B978-0-12-384947-2.00083-0.

Frank JA, Reich CI, Sharma S, Weisbaun JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied Environmental Microbiology. 74(8):2461–2470. DOI: https://doi.org/10.1128/AEM.02272-07.

Gerayeli N, Baghaee-Ravari S, Tarighi S. 2017. Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. European Journal of Plant Pathology. 150(4):1049–1063. DOI: https://doi.org/10.1007/s10658-017-1344-0.

Kang JE, Han JW, Jeon BJ, Kim BS. 2016. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica. Microbiological Research. 184:32–41. DOI: https://doi.org/10.1016/j.micres.2015.12.005.

Lee DH, Lim JA, Lee J, Roh E, Jung K, Choi M, Oh C, Ryu S, Yun J, Heu S. 2013. Characterization of genes required for the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Pcc21 in Chinese cabbage. Microbiology. 159(7):1487–1496. DOI: https://doi.org/10.1099/mic.0.067280-0.

Lee S, Vu NT, Oh EJ, Rahimi-Midani A, Thi TN, Song YR, Hwang IS, Choi TJ, Oh CS. 2021. Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage phipccp-1 in kimchi cabbage. Microorganisms. 9(4):779. DOI: https://doi.org/10.3390/microorganisms9040779.

Mandang R, Assa B, Sualang DS. 2016. Efektivitas plant growth promoting rhizobacteria (PGPR) dan Pseudomonas fluorescens dalam menghambat penyakit busuk lunak pada tanaman kubis bunga (Brassica oleracea var. botrytis L). Cocos. 7(7):1–9. DOI: https://doi.org/10.35791/cocos.v7i7.13930.

Mohammed MJ, Selman ED. 2013. Detection of local Erwinia isolated causing in potato by using DNA amplification by polymerase chain reaction technique (PCR). Al-Nahrain Journal of Science. 16(3):224–229. DOI: https://doi.org/10.22401/JNUS.16.3.31.

Montero-Calasanz MC, Goker M, Rohde M, Sproer C, Schumann P, Busse HJ, Schmid M, Klenk HP, Tindall BJ, Camacho M. 2014. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Systematic and Applied Microbiology. 37:342–350. DOI: https://doi.org/10.1016/j.syapm.2014.04.004.

Penuelas J, Terradas J. 2014. The foliar microbiome. Trends in Plant Science. 19(5):278–280. DOI: https://doi.org/10.1016/j.tplants.2013.12.007.

Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, van Wees SCM, Bakker PAHM. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology. 52:347–375. DOI: https://doi.org/10.1146/annurev-phyto-082712-102340.

Portier P, Pedron J, Taghouti G, Fisher-Le Saux M, Caullireau E, Bertrand C, Laurent A, Chawki K, Oulgazi S, Moumni M, Andrivon D, Dutrieux C, Faure D, Helias V, Barny MA. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. International Journal of Systematic Evolutionary Microbiology. 69:3207–3216. DOI: https://doi.org/10.1099/ijsem.0.003611.

Prihatiningsih N, Arwiyanto T, Hadisutrisno B, Widada J. 2015. Mekanisme antibiosis Bacillus subtilis B315 untuk pengendaian penyakit layu bakteri kentang. Jurnal Hama dan Penyakit Tumbuhan Tropika 15(1):64–71. DOI: https://doi.org/10.23960/j.hptt.11564-71.

Putra C, Giyanto. 2014. Kompatibilitas Bacillus spp. dan aktinomiset sebagai agens hayati Xanthomonas oryzae pv. oryzae dan pemacu pertumbuhan padi. Jurnal Fitopatologi Indonesia. 10(5):160–169. DOI: https://doi.org/10.14692/jfi.10.5.160.

Raoul des Essarts Y, Cigna J, Quêtu-Laurent A, Caron A, Munier E, Beury-Cirou A, Helias V, Faure D. 2015. Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Applied Environmental Microbiology. 82(1):268–278. DOI: https://doi.org/10.1128/AEM.02525-15.

Sang MK, Jeong JJ, Kim J, Kim KD. 2018. Growth promotion and root colonisation in pepper plants by phosphate-solubilising Chryseobacterium sp. strain ISE14 that suppresses Phytophthora blight. Annals of Applied Biology. 172(2):208–223. DOI: https://doi.org/10.1111/aab.12413.

Schaad NW, Jones JB, Chun W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. Ed ke-3. Minnesota (US): The American Phytopathological Society.

Sharma R, Gupta A. 2014. Differentiation of oral Streptococcal species by haemolysis in blood agar medium in vitro. International Journal of Engineering and advanced Technology (IJEAT). 3(4):143–144. https://www.ijeat.org/ portfolio-item/d2934043414/ [diunduh 22 Juni 2022].

Stone BWG, Weingarten EA, Jackson CR. 2018. The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews Online. 1(2):1–24. DOI: https://doi.org/10.1002/9781119312994.apr0614.

Turner TR, James EK, Poole PS. 2013. The plant microbiome. Genome Biology 14(6):209. DOI: https://doi.org/10.1186/gb-2013-14-6-209.

Yoo SJ, Weon HY, Song J, Sang MK. 2020. Effects of Chryseobacterium soldanellicola T16E-39 and Bacillus siamensis T20E-257 on biocontrol against phytophthora blight and bacterial wilt and growth promotion in tomato plants. Intenational Journal of Agriculture & Biology. 23:534‒540. DOI: 10.17957/ IJAB/15.1320.

Zarpelon TG, Guimarães LMdaS, Alfenas-Zerbini P, Lopes ES, Mafia RG, Alfenas AC. 2016. Rhizobacterial characterization for quality control of eucalyptus biogrowth promoter products. Brazilian Journal of Microbiology. 47(4):973–979. DOI: https://doi.org/10.1016/j.bjm.2016.07.013.

Zhang J, Gao C, Yu XM, Lun HY, Du ZJ. 2020. Chryseobacterium lacus sp. nov. isolated from the surface water of two lakes with light-induced carotenoid production. Frontiers in Microbiology 11:251. DOI: https://doi.org/10.3389/fmicb.2020.00251.

How to Cite
Af’idzatuttama, NawangsihA. A., & MutaqinK. H. (2022). Potensi Bakteri Filosfer pada Daun Kubis untuk Mengendalikan Penyakit Busuk Lunak oleh Pectobacterium carotovorum pada Sawi Putih . Jurnal Fitopatologi Indonesia, 18(3), 115-124. https://doi.org/10.14692/jfi.18.3.115-124