Nitrification Rate in the Bioremediation of Organic Wastewater using Chlorella sp. and Nitrifying-Denitrifying Bacteria

  • Arya Ksatria Fernanda Hendrawan Diponegoro University
  • Norma Afiati Diponegoro University
  • Arif Rahman Diponegoro University
Keywords: Nitrification, Bioremediation, Organic Waste, Chlorella sp., Nitrification-Denitrification Bacteria

Abstract

Global nitrogen pollution in the aquatic environment has been increased mostly due to the disposal of organic wastewater from human activities. Chronic disposal of nitrogen compounds into the waters  causes eutrophication and death of aquatic organisms. Process of reducing nitrogen in wastewater can be carried out economically and efficiently using nitrifying-denitrifying bacteria. Beside that, another environmentally friendly technology that can also be used is bioremediation using microalgae such as Chlorella sp. The synergistic relationship between bacteria and microalgae has a potential to better reduce performance of nitrogen compounds in organic wastewater. This study, which was conducted from July to August 2020, was laboratory experiment using randomised block design. It aimed to determine growth rate of Chlorella sp., rate of nitrification, rate of changes of nitrate compounds, effect of differences between treatments and duration of the changes of nitrate levels in organic wastewater as also relationship between Chlorella sp. to the nitrifying-denitrifying bacteria. Fresh wastewater samples were taken from Lake Rawa Pening. The results showed that growth pattern of Chlorella sp. has increased until the peak day (day 6) then decreased toward day 9. The highest nitrification rate was performed by treatment C, i.e., 0.2 mg NH4-N.l-1.hour-1 followed by treatment B, D and A respectively, 0.169, 0.009 and 0.008 mg NH4-N.l-1.hour-1. Similarly, the highest percentage change in nitrate compounds during the study was treatment C (1874%), B (1664%), D (200%) and A (175%) subsequently. The analysis of variance between treatment for changes in nitrate compounds was significantly different (p value <0.05). A further DMRT/Duncan Multiple Range Test showed that the highest average was also treatment C, B, D and A.

Downloads

Download data is not yet available.

Author Biographies

Arya Ksatria Fernanda Hendrawan, Diponegoro University

Aquatic Resources Management Study Program, Department of Aquatic Resources, Faculty of Fisheries and Marine Sciences, Diponegoro University, 50275, Indonesia

Norma Afiati, Diponegoro University

Professor of the Department of Aquatic Resources, Faculty of Fisheries and Marine Sciences, Diponegoro University, 50275, Indonesia

Arif Rahman, Diponegoro University

Lecturer at the Department of Aquatic Resources, Faculty of Fisheries and Marine Sciences, Diponegoro University, 50275, Indonesia

References

Adyasari D, Oehler T, Afiati N, Moosdorf N. 2018. Groundwater nutrient inputs into an urbanized tropical estuary system in Indonesia. Science of the Total Environment 627(1): 1066-1079.

Agustiyani D, Imamuddin H, Gunawan E, Darusman LK. 2007. Proses nitrifikasi oleh kultur mikroba penitrifikasi N-Sw dan zeolit. Jurnal Ilmiah Nasional 8(5): 405-411.

Al-Mamoori SOH, Al-Yaseen BM, Jabuk SIA, Kamil ZS, Jawad ZF, Naji OM. 2020. Bioremediation by using the microalgae Chlorella vulgaris to remove phosphate and nitrite from the domestic waste water treatment plant in Iraq. The Journal of Research on the Lepidoptera 51(1): 660-668.

[APHA] American Public Health Association. 1989. Standar methods for the examination of water and wastewater. American Public Control Federation. Washington DC.

Arifin F. 2012. Uji kemampuan Chlorella sp. sebagai bioremidiator limbah cair tahu [Tesis]. Malang (ID): UIN Maliki Malang.

Arifin M. 2000. Pengolahan limbah hotel berbintang [Tesis]. Bogor (ID): Institut Pertanian Bogor.

Boroh R, Litaay M, Umar MR, Ambeng. 2019. Pertumbuhan Chlorella sp. pada beberapa kombinasi media kultur. BIOMA: Jurnal Biologi Makassar 4(2): 129-137.

Carritt DE, Kanwisher JW. 1959. Electrode system for measuring dissolved oxygen. Anal. Chem 31: 5–9.

Chen H, Wang Q. 2020. Microalgae-based nitrogen bioremediation. Algal Research 46: 10-17.

Chilmawati D, Suminto. 2008. Penggunaan media kultur yang berbeda terhadap pertumbuhan Chlorella sp. Jurnal Saintek Perikanan 4(1): 42 – 49.

Cui B, Yang Q, Liu X, Huang S, Yang Y, Liu Z. 2019. The effect of dissolved oxygen concentration on long-term stability of partial nitrification process. Journal of Environmental Sciences 30: 1-9.

Cytryn E, Levkovitch I, Negreanu Y, Dowd S, Frenk S, Silber A. 2012. Impact of short-term acidification on nitrification and nitrifying bacterial community dynamics in soilless cultivation media. Appl Environ Microbiol 78(18): 6576–6582.

Djazari M, Rahmawati D, Nugroho MA. 2013. Pengaruh sikap menghindari risiko sharing dan knowledge self-efficacy terhadap informal knowledge sharing pada mahasiswa FISE UNY. Jurnal Nominal. 2(2):181-209.

Djoharam V, Riani E, Yani M. 2018. Analisis kualitas air dan daya tampung beban pencemaran Sungai Pesanggrahan di wilayah Provinsi DKI Jakarta. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 8(1): 127-133.

Djokosetiyanto D, Sunarma A, Widanarni. 2006. Perubahan ammonia (NH3-N), nitrit (NO2-N) dan bitrat (NO3-N) pada media pemeliharaan ikan nila merah (Oreochromis sp.) di dalam sistem resirkulasi. Jurnal Akuakultur Indonesia 5: 13-20.

[EPA] Environmental Protection Agency. 1974. Methods for chemical analysis of water and wastes. Washington DC.

Feng P, Xu Z, Qin L, Alam AM, Wang Z, Zhu S. 2020. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors. Bioresource Technology 301: 1-9.

Gilhawley F. 2008. Factors governing nitrification in an activated sludge system treating a pharmaceutical wastewater [Tesis]. Dublin (IRL): Dublin City University.

Grunditz C, Dalhammar G. 2001. Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Research 35(2): 433–440.

Herlambang A, Marsidi R. 2003. Proses denitrifikasi dengan sistem biofilter untuk pengolahan air limbah yang mengandung nitrat. J.Tek.Ling 4(1): 46-55.

Hong Y, Wang Y, Wu J, Jiao L, He X, Wen X, Chang X. 2018. Developing a mathematical modeling method for determining the potential rates of microbial ammonia oxidation and nitrite oxidation in environmental samples. International Biodeterioration & Biodegradation 133: 116–123.

Ikhsan MK, Rudiyanti S, Ain C. 2020. Hubungan antara nitrat dan fosfat dengan kelimpahan fitoplankton di Waduk Jatibarang Semarang. MAQUARES 9(1): 23-30.

Jia H, Yuan Q. 2016. Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science 2(1): 1-15.

Kwon G, Kim H, Song C, Jahng D. 2019. Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochemical Engineering Journal 152: 1-54.

Le TTH, Fettig J, Meon G. 2018. Kinetics and simulation of nitrification at various pH values of a polluted river in the tropics. Ecohydrology & Hydrobiology 118: 1-12.

Lihawa F, Mahmud M. 2017. Evaluasi karakteristik kualitas air Danau Limboto. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 7(3): 260-266.

[LIPI] Lembaga Ilmu Pengetahuan Indonesia. 2015. Eutrofikasi penyebab kematian massal ikan. Jakarta. http://lipi.go.id/ [12 Januari 2020].

Lomas MW, Lipschultz F. 2006. Forming the primary nitrite maximum: nitrifiers or phytoplankton?. Limnol. Oceanogr 51(5): 2453–2467.

Ma X, Zhou W, Fu Z, Cheng Y, Min M, Liu Y, Ruan R. 2014. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresource Technology. 167: 8–13.

Martinez S, Alvarez S, Marin MR, Delgado DMM. 2019. Food consumption contribution to nitrogen pollution of cities in Northern and Southern Europe. Sustainable Cities and Society 50: 1-10.

Mattjik AA, Sumertajaya M. 2000. Perancangan percobaan dengan aplikasi SAS dan Minitab. Bogor: IPB Press. 79 hlm.

Minhas AK, Hodgson P, Barrow CJ, Adholeya A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7: 1-19.

Nurhayati C, Hamzah B, Pambayun R. 2014. Pengaruh pH, konsentrasi isolat Chlorella vulgaris dan waktu pengamatan terhadap tingkat cemaran limbah cair crumb rubber. Jurnal Dinamika Penelitian Industri 25(2): 97-106.

Persulessy ER, Lembang FK, Djidin H. 2016. Penilaian cara mengajar menggunakan rancangan acak lengkap (studi kasus: Jurusan Matematika FMIPA UNPATTI). Jurnal Ilmu Matematika dan Terapan 10(1): 9-16.

Prabowo R. 2017. Kadar nitrit pada sumber air sumur di Kelurahan Meteseh, Kec. Tembalang, Kota Semarang. Jurnal Ilmiah Cendekia Eksakta 1(1): 55-61.

Prayitno J. 2015. Pola pertumbuhan dan pemanenan biomassa dalam fotobioreaktor mikroalga untuk penangkapan karbon. Jurnal Teknologi Lingkungan 17(1): 45-52.

Riffiani R. 2009. Peningkatan kualitas akuakultur menggunakan teknologi biofilter mikroalga imobil. Biosfera 26(3): 124-130.

Rusdiani RR, Boedisantoso R, dan Hanif M. 2016. Optimalisasi teknologi fotobioreaktor mikroalga sebagai dasar perencanaan strategi mitigasi gas CO2. Jurnal Teknik ITS 5(2): 2337-3539.

Rustadi. 2009. Eutrofikasi nitrogen dan fosfor serta pengendaliannya dengan perikanan di Waduk Sermo. Jurnal Manusia dan Lingkungan 16(3): 176-186.

Suprianto, Redjeki ES. dan Dadiono MS. 2019. Optimalisasi dosis probiotik terhadap laju pertumbuhan dan kelangsungan hidup ikan nila (Oreochromis niloticus) pada sistem bioflok. Journal of Aquaculture and Fish Health 8(2): 80-86.

Temino-Boes R, Romero I, Pachés M, Martinez-Guijarro R, Romero-Lopez R. 2019. Anthropogenic impact on nitrification dynamics in coastal waters of the Mediterranean Sea. Marine Pollution Bulletin 145: 14–22.

Tyas DE, Widyorini N, Solichin A. 2018. Perbedaan jumlah bakteri dalam sedimen pada kawasan bermangrove dan tidak bermangrove di perairan Desa Bedono, Demak. MAQUARES 7(2): 189-196.

Wasito H, Karyati E, Vikarosa CD, Hafizah IN, Utami HR, Khairun M. 2017. Test strip pengukur pH dari bahan alam yang diimmobilisasi dalam kertas selulosa. Indo. J. Chem. Sci 6(3): 234-240.

Zulfia N, Aisyah. 2013. Status trofik Perairan Rawa Pening ditinjau dari kandungan unsur hara (NO3 dan PO4) serta klorofil-a. BAWAL 5(3): 189-199.

Published
2021-08-12
How to Cite
Hendrawan, A. K. F., Afiati, N. and Rahman, A. (2021) “Nitrification Rate in the Bioremediation of Organic Wastewater using Chlorella sp. and Nitrifying-Denitrifying Bacteria”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 11(2), pp. 309-323. doi: 10.29244/jpsl.11.2.309-323.