Performances of Crossbred Chickens Fed Fermented Papaya Leaf and Seed Powder at High Stocking Density

  • S. Sugiharto Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro
  • T. Yudiarti Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro
  • E. Widiastuti Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro
  • H. Wahyuni Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro
  • T. Sartono Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro
  • A. R. Pratama Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro
Keywords: Crossbred chicken, fermented papaya feed, multienzyme, stress-related high stocking density

Abstract

The study evaluated the influence of fermented papaya leaf and seed powder (FPLS) and/or multienzymes on the growth, physiology, antioxidant, and gut ecology of the Indonesian crossbred chicken (ICC) at high stocking density. Three hundred and seventy ICC were randomly allotted to LSD (chicks fed conventional feed at low stocking density), HSD (chicks fed conventional feed at high stocking density), HSD+mE (chicks fed conventional feed plus multienzyme at high stocking density), HSD+FPLS (chicks fed FPLS at high stocking density) and HSD+FPLS+mE (chicks fed FPLS plus multienzyme at high stocking density). Body weight and feed intake were determined weekly. Two ICC were taken from each pen (10 chicks per treatment group) at week 10 for sampling. The study was arranged based on a completely randomized design with five treatment groups, each consisted of five replicates. Except for performance, analysis of variance was conducted on two chicks from each replicate (10 chicks per treatment group). Chicks in LSD consumed more (p<0.05) feed and had a higher (p<0.05) feed conversion ratio. Platelet distribution width (PDW) was lower (p<0.05) in HSD, HSD+FPLS, and HSD+FPLS+mE chicks than in LSD chicks. Lymphocyte counts were lower (p<0.05) in HSD relative to HSD+mE chicks. Superoxide dismutase (SOD) was higher (p<0.05) in HSD and HSD+FPLS+mE chicks than in LSD, HSD+mE, and HSD+FPLS chicks. High-density lipoprotein was smaller (p<0.05) in HSD+mE chicks than in LSD, HSD, and HSD+FPLS chicks. Compared to the other treatment groups of chicks, HSD+FPLS chicks had a lower (p<0.05) albumin level. Creatinine level was lower (p<0.05) in HSD chicks than in the other group of chicks. Enterobacteriaceae counts were lower (p<0.05) in HSD+FPLS cecal content of chicks than in LSD and HSD chicks. The redness values of breast meats were lower (p<0.05) in HSD+FPLS chicks than the chicks in HSD+mE and HSD+FPLS+mE dietary treatments. LSD chicks had higher (p<0.05) redness values of thigh meat than the other treatment groups of chicks. LSD chicks also had higher (p<0.05) yellowness values than HSD+mE and HSD+FPLS+mE chicks. In conclusion, high stocking density resulted in mild stress conditions, as was demonstrated by the increased SOD and decreased PDW and redness meat values. A combination of FPLS and multienzyme ameliorated the adverse influence of high stocking density in ICC.

Downloads

Download data is not yet available.

References

Aghili, A. H., M. Toghyani, & S. A. Tabeidian. 2019. Effect of incremental levels of apple pomace and multi enzyme on performance, immune response, gut development and blood biochemical parameters of broiler chickens. Int. J. Recycl. Org. Waste Agric. 8:321-334. https://doi.org/10.1007/s40093-019-00305-8

Amer, S.A., M. A. F. Naser, A. A. A. Abdel-Wareth, A. A. Saleh, S. A. M. Elsayed, D. M. A. Fattah, & A. E. Metwally. 2020. Effect of dietary supplementation of alpha-galactosidase on the growth performance, ileal digestibility, intestinal morphology, and biochemical parameters in broiler chickens. BMC Vet. Res. 16:144. https://doi.org/10.1186/s12917-020-02359-7

AOAC. 1995. Official Methods of Analysis. 16th Ed. Association of Official Analytical Chemists, Washington DC.

Asghar, N., S. A. R. Naqvi, Z. Hussain, N. Rasool, Z. A. Khan, S. A. Shahzad, T. A. Sherazi, M. R. S. A. Janjua, S. A. Nagra, M. Zia-Ul-Haq, & H. Ze Jaafar. 2016. Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem. Cent. J. 10:5. https://doi.org/10.1186/s13065-016-0149-0

Attia, Y. A., M. A. Al-Harthi, & A. S. El-Shafey. 2020. Influence of different time and frequency of multienzyme application on the efficiency of broiler chicken rearing and some selected metabolic indicators. Animals. 10:450. https://doi.org/10.3390/ani10030450

Attia, Y. A., W. S. El-Tahawy, A. E. E. A. El-Hamid, S. S. Hassan, A. Nizza, & M. I. El-Kelaway. 2012. Effect of phytase with or without multienzyme supplementation on performance and nutrient digestibility of young broiler chicks fed mash or crumble diets. Ital. J. Anim. Sci. 11:3. https://doi.org/10.4081/ijas.2012.e56

Bolton, W. 1967. Poultry Nutrition. MAFF Bulletin No.174. HMSO, London.

Botsoglou, N. A., E. Christaki, D. J. Fletouris, P. Florou-Paneri, & A. B. Spais. 2002. The effect of dietary oregano essential oil on lipid oxidation in raw and cooked chicken during refrigerated storage. Meat Sci. 62:259-265. https://doi.org/10.1016/s0309-1740(01)00256-x

Chen, Y., Qiao, Y., Xiao, Y., Chen, H., Zhao, L., Huang, M., & Zhou G. 2016. Differences in physicochemical and nutritional properties of breast and thigh meat from crossbred chickens, commercial Broilers, and spent hens. Asian-Australas. J. Anim. Sci. 29:855-64. https://doi.org/10.5713/ajas.15.0840

Disetlhe, A. R. P., U. Marume, V. Mlambo, & A. Hugo. 2019. Effects of dietary humic acid and enzymes on meat quality and fatty acid profiles of broiler chickens fed canola-based diets. Asian-Australas. J. Anim. Sci. 32:711-720. https://doi.org/10.5713/ajas.18.0408

Gonzalez-Esquerra, R., & S. Leeson. 2006. Physiological and metabolic responses of broilers to heat stress - Implications for protein and amino acid nutrition. World’s Poult. Sci. J. 62:282-295. https://doi.org/ 10.1079/WPS200597

Hosseini, S. M. & M. Afshar. 2017. Effect of diet form and enzyme supplementation on stress indicators and bone mineralisation in heat-challenged broilers fed wheat-soybean diet. Ital. J. Anim. Sci. 16:616-623. https://doi.org/10.1080/1828051X.2017.1321973

Huo, X. & P. Na-Lampang. 2012. Thai crossbred chickens can be raised in a high stocking density. Asian J. Poult. Sci. 6:146-151. https://doi.org/10.3923/ajpsaj.2012.146.151

Huo, X. & P. Na-Lampang. 2016. Effects of stocking density on feather pecking and aggressive behaviour in Thai crossbred chickens. Agric. Nat. Res. 50:396-399. https://doi.org/10.1016/j.anres.2016.04.006

Jeong, S.-B., Y. B. Kim, J.-W. Lee, D.-H. Kim, B.-H. Moon, H.-H. Chang, Y.-H. Choi, & K.-W. Lee. 2020. Role of dietary gamma-aminobutyric acid in broiler chickens raised under high stocking density. Anim. Nutr. 6:293-304. https://doi.org/10.1016/j.aninu.2020.03.008

Jobe, M. C., C. N. Ncobela, N. W. Kunene, & A. R. Opoku. 2019. Effects of Cassia abbreviata extract and stocking density on growth performance, oxidative stress and liver function of indigenous chickens. Trop. Anim. Health Prod. 51:2567-2574. https://doi.org/10.1007/s11250-019-01979-y

Kridtayopas, C., C. Rakangtong, C. Bunchasak, & W. Loongyai. 2019. Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poult. Sci. 98:4595-4605. https://doi.org/10.3382/ps/pez152

Law, F. L., I. Zulkifli, A. F. Soleimani, J. B. Liang, & E. A. Awad. 2018. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-Australas. J. Anim. Sci. 31:1291-1300. https://doi.org/10.5713/ajas.17.0581

Lee, S. A., D. Nagalakshmi, M. V. L. N. Raju, S. V. R. Rao, M. R. Bedford, & C. L. Walk. 2019. Phytase as an alleviator of high-temperature stress in broilers fed adequate and low dietary calcium. Poult. Sci. 98:2122-2132. https://doi.org/10.3382/ps/pey566

Li, W., F. Wei, B. Xu, Q. Sun, W. Deng, H. Ma, J. Bai, & S. Li. 2019. Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers. Asian-Australas. J. Anim. Sci. 32:1914-1922. https://doi.org/10.5713/ajas.18.0939

Lonkala, S. & A. R. N. Reddy. 2019. Total phenolic, antibacterial activity of carica papaya leaves and Allium sativum cloves alone and in combination against multiple strains. Pharmacogn. J. 11:600-602.

Madrid, J., P. Catalá-Gregori, V. García, & F. Hernández. 2010. Effect of a multienzyme complex in wheat-soybean powder diet on digestibility of broiler chickens under different rearing conditions. Ital. J. Anim. Sci. 9:e1. https://doi.org/10.4081/ijas.2010.e1

Magnuson, A.D., G. Liu, T. Sun, S. A. Tolba, L. Xi, R. Whelan, & X. G. Lei. 2020. Supplemental methionine and stocking density affect antioxidant status, fatty acid profiles, and growth performance of broiler chickens. J. Anim. Sci. 98:skaa092. https://doi.org/10.1093/jas/skaa092

Müller Fernandes, J. I., C. Bortoluzzi, A. M. Burin Junior, A. Rorig, R. Perini, A. Rorig, R. Perini, & A. B. de Cristo. 2015. Effect of different enzymatic supplements in diets of broilers raised at high stocking density. J. Vet. Med. Res. 2:1016.

Oloruntola, O. D., S. O. Ayodele, S. A. Adeyeye, M. H. Ogunsipe, O. T. Daramola, & E. S. Ayedun. 2018. Effect of pawpaw leaf powder and multienzyme supplementation in the diet on performance, digestibility, and oxidative enzyme status of rabbits. J. Basic Appl. Zool. 79:26. https://doi.org/10.1186/s41936-018-0039-1

Olukomaiya, O., C. Fernando, R. Mereddy, X. Li, & Y. Sultanbawa. 2019. Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Anim. Nutr. 5:319-330. https://doi.org/10.1016/j.aninu.2019.05.005

Pan, L., P. F. Zhao, X. K. Ma, Q. H. Shang, S. F. Long, Y. Wu, W. Wang, & X. S. Piao. 2019. Forsythia suspensa extract protects broilers against breast muscle oxidative injury induced by corticosterone mimicked pre-slaughter acute stress. Poult. Sci. 97:2095-2105. https://doi.org/10.3382/ps/pey046

Patel, S. S., M. Z. Molnar, J. A. Tayek, J. H. Ix, N. Noori, D. Benner, S. Heymsfield, J. D. Kopple, C. P. Kovesdy, & K. Kalantar-Zadeh. 2013. Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J. Cachexia Sarcopenia Muscle. 4:19-29. https://doi.org/10.1007/s13539-012-0079-1

Patria, C. A., R. Afnan, & I. I. Arief. 2016. Physical and microbiological qualities of kampong-broiler crossbred chickens meat raised in different stocking densities. Med. Pet. 39:141-147. https://doi.org/10.5398/medpet.2016.39.3.141

Qaid, M., H. Albatshan, T. Shafey, E. Hussein, & A. M. Abudabos. 2016. Effect of stocking density on the performance and immunity of 1- to 14-d- old broiler chicks. Rev. Bras. Cienc. Avic. 18:683-692. https://doi.org/10.1590/1806-9061-2016-0289

Rashidi, N., M. R. Ghorbani, A. Tatar, & S. Salari. 2019. Response of broiler chickens reared at high density to dietary supplementation with licorice extract and probiotic. J. Anim. Physiol. Anim. Nutr. (Berl). 103:100-107. https://doi.org/10.1111/jpn.13007

Santimone, I., A. Di Castelnuovo, A. De Curtis, M. Spinelli, D. Cugino, F. Gianfagna, F. Zito, M. B. Donati, C. Cerletti, G. de Gaetano, & L. Lacoviello. 2011. White blood cell count, sex and age are major determinants of heterogeneity of platelet indices in an adult general population: Results from the MOLI-SANI project. Haematologica. 96: 1180-1188. https://doi.org/10.3324/haematol.2011.043042

Sekeroglu, A., M. Sarica, M. S. Gulay, & M. Duman. 2011. Effect of stocking density on chick performance, internal organ weights and blood parameters in broilers. J. Anim. Vet. Adv. 10:246-250. https://doi.org/10.3923/javaa.2011.246.250

Silas, A. F. A., O. A. Adeyemi, D. Eruvbetine, O. M. Sogunle, O. B. Oluwole, & G. N. Elemo. 2014. Effect of stocking density and quantitative feed restriction on growth performance, digestibility, haematological characteristics and cost of starting broiler chicks. J. Anim. Health Prod. 2:60-64. https://doi.org/10.14737/journal.jahp/2014/2.4.60.64

Sobayo, R. A., A. O. Oso, O. A. Adeyemi, A. O. Fafiolu, A. V. Jegede, O. M. O. Idowu, O. U. Dairo, R. B. Iyerimah, O. A. Ayoola, & R. A. Awosanya. 2012. Changes in growth, digestibility and gut anatomy by broilers fed diets containing ethanoltreated castor oil seed (Ricinus communis L.) meal. Rev. Cient. UDO Agríc. 12:660-667.

Sugiharto, S. 2020. The potentials of two underutilized acidic fruits (Averrhoa bilimbi L. and Phyllanthus acidus L.) as phytobiotics for broiler chickens. J. Adv. Vet. Res. 10:179-185.

Sugiharto, S., T. Yudiarti, I. Isroli, E. Widiastuti, & F. D. Putra. 2017. Effect of dietary supplementation with Rhizopus oryzae or Chrysonilia crassa on growth performance, blood profile, intestinal microbial population, and carcass traits in broilers exposed to heat stress. Arch. Anim. Breed. 60:347-56. https://doi.org/10.5194/aab-60-347-2017

Sugiharto, S., T. Yudiarti, I. Isroli, E. Widiastuti, H. I. Wahyuni, & T. A. Sartono. 2019a. Fermented feed as a potential source of natural antioxidants for broiler chickens - A mini review. Agric. Conspec. Sci. 84:313-318.

Sugiharto, S., T. Yudiarti, & I. Isroli. 2019b. Growth performance, haematological parameters, intestinal microbiology, and carcass characteristics of broiler chickens fed two-stage fermented cassava pulp during finishing phase. Trop. Anim. Sci. J. 42:13-120. https://doi.org/10.5398/tasj.2019.42.2.113

Sugiharto, S., T. Yudiarti, I. Isroli, E. Widiastuti, H. I. Wahyuni, T. A. Sartono, A. N. Al-Baarri, & N. Nurwantoro. 2019c. Breast muscle characteristics of avian pathogenic Escherichia coli infected broilers fed with antibiotics or probiotic. Poult. Sci. J. 7:131-140. https://doi.org/10.22069/PSJ.2019.16572.1446

Sugiharto, S., E. Widiastuti, I. Isroli, H. I. Wahyuni, & T. Yudiarti. 2020a. Effect of a fermented mixture of papaya leaf and seed powder on production traits and intestinal ecology of the Indonesian indigenous crossbred chickens. Acta Univ. Agric. Silvic. Mendelianae Brun. 68:707-718. https://doi.org/10.11118/actaun202068040707

Sugiharto, S., E. Widiastuti, I. Isroli, T. Yudiarti, T. A. Sartono, & H. I. Wahyuni. 2020b. Effect of feeding fermented mixture of cassava pulp and Moringa oleifera leaf powder on immune responses, antioxidative status, biochemistry indices, and intestinal ecology of broilers. Vet. World. 13:392-399. https://doi.org/10.14202/vetworld.2020.392-399

Surai, P. F. 2016. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Res. Nutr. 1:1-17. https://doi.org/10.21767/2572-5459.100008

Surai, P. F., I. I. Kochish, V. I. Fisinin, & M. T. Kidd. 2019. Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants. 8:235. https://doi.org/10.3390/antiox8070235

Szymczyk, B., P. Hanczakowski, W. Szczurek, & M. Frys-Żurek. 2007. Effect of naked oat and enzymes in diets for broiler chickens on quality, fatty acid profile and oxidative stability of breast muscle. Pol. J. Food Nutr. Sci. 57:541-545.

Tallentire, C. W., I. Leinonen, & I. Kyriazakis. 2016. Breeding for efficiency in the broiler chicken: A review. Agron. Sustain. Dev. 36:66. https://doi.org/10.1007/s13593-016-0398-2

Villegas, P. 1987. Avian Virus Diseases Laboratory Manual. College of Veterinary Medicine. University of Georgia, Athens, Georgia, USA.

Welde, Y. & A. Worku. 2018. Identification and extraction of papain enzyme from papaya leaf in Adigrat Towen, Northern Ethiopia. J. Med. Plants Stud. 6:127-130.

Published
2021-08-19
How to Cite
Sugiharto, S., Yudiarti, T., Widiastuti, E., Wahyuni, H., Sartono, T., & Pratama, A. R. (2021). Performances of Crossbred Chickens Fed Fermented Papaya Leaf and Seed Powder at High Stocking Density. Tropical Animal Science Journal, 44(3), 316-326. https://doi.org/10.5398/tasj.2021.44.3.316