Comparison between the Brix Refractometer and ELISA for Assessment of Colostrum IgG of Montbeliard x Holstein Cross Dairy Cows

  • N. H. Fahim Animal Production Department, Faculty of Agriculture, Cairo University
  • T. A. Imbabi Animal Production Department, Faculty of Agriculture, Benha University
Keywords: refractometer, colostrum, IgG, Montbeliard x Holstein

Abstract

The objectives of the present study were to examine the association between the brix refractometer% and ELISA assays in the assessment of colostrum-IgG content and in studying the factors affecting this content. Contents of IgG in colostrum samples of 132 healthy primiparous and multiparous Montbeliard x Holstein cross dairy cows kept in Egypt were evaluated using ELISA assay and brix refractometer%. The ELISA results showed that the IgG contents in the colostrum samples ranged from 5.96 to 114.84 mg/mL, with a mean of 57.07 mg/mL. Brix% results ranged from 15% to 35%, with a mean of 23.97%. The correlation and regression coefficients between ELISA(IgG) and brix% were significantly high (r=0.68 and r2 =0.59, respectively). Prediction regression equation was ELISA(IgG) = 31.81+1.12(brix refractometer%). The effects of parity and season of calving on both ELISA(IgG) and brix% were significant. ELISA(IgG) and brix% were higher in cows ≥ 3 lactations than those in the first and second lactations. Moreover, summer calving recorded higher ELISA(IgG) and brix% than autumn calving. Either ELISA(IgG) or brix% were not significantly affected by calf’s sex, single/twin births, or history of cows’ diseases. ELISA(IgG) and brix% had a significant positive correlation with calf’s birth weights and gestation lengths, while they recorded a non-significant correlation with dry-period length. It can be concluded that a refractometer is a simple on-farm tool to assess colostrum quality. Its high correlation with the lab analytical assay of ELISA confirms the validity of using refractometers by researchers in colostrum studies.

Downloads

Download data is not yet available.

References

Angulo, J., L. Miguel Gómez, L. Mahecha, E. Mejía, J. Henao, & C. Mesa. 2015. Calf’s sex, parity and the hour of harvest after calving affect colostrum quality of dairy cows grazing under high tropical conditions. Trop. Anim. Health. Prod. 47:699-705. https://doi.org/10.1007/s11250-015-0781-z

Argüello, A., N. Castro, S. Álvarez, & J. Capote. 2006. Effects of the number of lactations and litter size on chemical composition and physical characteristics of goat colostrum. Small Rumin. Res. 64:53-59. https://doi.org/10.1016/j.smallrumres.2005.03.016

Bartier, A. L., M. C. Windeyer, & L. Doepel. 2015. on-farm tools for colostrum quality measurement. J. Dairy Sci. 98:1878-1884. https://doi.org/10.3168/jds.2014-8415

Baumrucker, C. R., A. M., Burkett, A. L. Magliaro-Macrina, & C. D. Dechow. 2010. Colostrogenesis: Mass transfer of immunoglobulin G1 into colostrum. J. Dairy Sci. 93:3031-3038. https://doi.org/10.3168/jds.2009-2963

Baumrucker, C. R., C. D. Dechow, A. L. Macrina, J. J.Gross, & R. M. Bruckmaier. 2016. Mammary immunoglobulin transfer rates following prepartum milking. J. Dairy Sci. 99:9254-9262. https://doi.org/10.3168/jds.2016-11370

Berry, D. P., F. Buckley, P. Dillon, R. D. Evans, & R. F. Veerkamp. 2004. Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows. Irish J. Agric. Food Res. 43:161-176.

Bielmann, V., J. Gillan, N. R. Perkins, A. L. Skidmore, S. Godden, & K. E. Leslie. 2010. An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle. J. Dairy Sci. 93:3713-3721. https://doi.org/10.3168/jds.2009-2943

Buczinski, S. & J. M. Vandeweerd. 2016. Diagnostic accuracy of refractometry for assessing bovine colostrum quality: A systematic review and meta-analysis. J. Dairy Sci. 99:7381-7394. https://doi.org/10.3168/jds.2016-10955

Cabral, R. G., C. E.Chapman, K. M. Aragona, E. Clark, M. Lunak, & P. S. Erickson. 2016. Predicting colostrum quality from performance in the previous lactation and environmental changes. J. Dairy Sci. 99:4048-4055. https://doi.org/10.3168/jds.2015-9868

Conneely, M. D., P. Berry, R. Sayers, J. P. Murphy, I. Lorenz, M. L. Doherty, & E. Kennedy. 2013. Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal 7:1824-1832. https://doi.org/10.1017/S1751731113001444

Csapo, J., Z. Csapo, T. G. Martin, J. Szentpeteri, & G. Wolf. 1994. Composition of colostrum from goats, ewes and cows producing twins. Int. Dairy J. 4:445-458. https://doi.org/10.1016/0958-6946(94)90058-2

Denholm, K. S., S. McDougall, G. Chambers, & W. Clough. 2018. Factors associated with colostrum quality in individual cows from dairy herds in the Waikato region of New Zealand. N. Z. Vet. J. 66:115-120. https://doi.org/10.1080/00480169.2017.1418684

Djoharjani, T., A. Ridhowi, & S. Kemal. 2019. The Effect of Parity on Colostrum Quality of Friesian Holstein Crossbred Cows in Indonesia. IOP Conference Series: Earth and Environmental Science, Vol. 478, The 4th Animal Production International Seminar 24-27 October, Malang, Indonesia. https://doi.org/10.1088/1755-1315/478/1/012058

Dunn, A., A. Ashfield, B. Earley, M. Welsh, A. Gordon, & S. J. Morrison. 2017. Evaluation of factors associated with immunoglobulin G, fat, protein, and lactose concentrations in bovine colostrum and colostrum management practices in grassland-based dairy systems in Northern Ireland. J. Dairy Sci. 100:2068-2079. https://doi.org/10.3168/jds.2016-11724

Gavin, K., A. Hoffman, J.N. Kiser, M.A.Cornmesser, S. AmirpourHaredasht, B. Martínez-López, J.R. Wenz, & D.A. Moore. 2018. Low colostrum yield in Jersey cattle and potential risk factors. J. Dairy Sci. 101:6388-6398. https://doi.org/10.3168/jds.2017-14308

Geiger, A. J. 2020. Colostrum: Back to basics with immunoglobulins. J. Anim. Sci. 98:126-132. https://doi.org/10.1093/jas/skaa142

Genc, M. 2015. Effect Of Some Environmental Factors on Colostrum Quality and Passive Immunity in Brown Swiss and Holstein Cattle. Ph.D. Thesis, Atatürk Uni., Health Sciences Institute, Erzurum.

Gross, J. J., E.C. Kessler, V. Bjerre-Harpoth, C. Dechow, C. R. Baumrucker, & R. M. Bruckmaier. 2014. Peripartal progesterone and prolactin have little effect on the rapid transport of immunoglobulin G into colostrum of dairy cows. J. Dairy Sci. 97:2923-2931. https://doi.org/10.3168/jds.2013-7795

Gulliksen, S.M., K.I. Lie, L. Sølverød, & O. Østera. 2008. Risk factors associated with colostrum quality in Norwegian dairy cows. J. Dairy Sci. 91:704-712. https://doi.org/10.3168/jds.2007-0450

Hoyraz, M., R. Sezer, M. Demirtaş, & A. Koç. 2015. A Research on colostrum quality and constituents of Holstein-Friesian cows. J. Tralleis Elektron. 4:1-7.

Johnsen, J. F., H. Viljugrein, K. E. Boe, S. M. Gulliksen, A. Beaver, A. M. Grøndahl, T. Sivrtsen, & C. M. Mejdell. 2019. A cross-sectional study of suckling calves’ passive immunity and associations with management routines to ensure colostrum intake on organic dairy farms. Acta Vet. Scand. 61:1-10. https://doi.org/10.1186/s13028-019-0442-8

Kessler, C., G. C. Pistol, R. M. Bruckmaier, & J. J. Gross. 2020a. Pattern of milk yield and immunoglobulin concentration and factors associated with colostrum quality at the quarter level in dairy cows after parturition. J. Dairy Sci. 103: 965-971. https://doi.org/10.3168/jds.2019-17283

Kessler, E. C., R. M. Bruckmaier, & J. J. Gross. 2020b. Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. J. Anim. Sci. 98:skaa 237. https://doi.org/10.1093/jas/skaa237

Le Cozler, Y., R. Guatteo, E. LeDréan, H. Turban, F. Leboeuf, K. Pecceu, & J. Guinard-Flament. 2016. IgG1 variations in the colostrum of Holstein dairy cows. Animal 10: 230-237. https://doi.org/10.1017/S1751731115001962

Løkke, M. M., R. Engelbrecht, & L. Wiking. 2016. Covariance structures of fat and protein influence the estimation of IgG in bovine colostrum. J. Dairy Res. 83:58-66. https://doi.org/10.1017/S0022029915000734

Maunsell, F. P., D. E. Morin, P. D. Constable, W. L. Hurley, I. McCoy, G. C. Kakoma, & R. E. Isaacson. 1998. Effects of mastitis on the volume and composition of colostrum produced by Holstein cows. J. Dairy Sci. 81:1291-1299. https://doi.org/10.3168/jds.S0022-0302(98)75691-7

Mayasari, N., G. de Vries Reilingh, M. G. Nieuwland, G. J. Remmelink, H. K. Parmentier, B. Kemp, & A. T. van Knegsel. 2015. Effect of maternal dry period length on colostrum immunoglobulin content and on natural and specific antibody titers in calves. J. Dairy Sci. 98:3969-3979. https://doi.org/10.3168/jds.2014-8753

Morrill, K. M., E. Conrad, A. Lago, J. Campbell, J. Quigley, & H. Tyler. 2012. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J. Dairy Sci. 95:3997-4005. https://doi.org/10.3168/jds.2011-5174

Morrill, K. M., K. E. Robertson, M. M. Spring, A. L. Robinson, & H. D. Tyler. 2015. Validating a refractometer to evaluate immunoglobulin G concentration in Jersey colostrum and the effect of multiple freeze-thaw cycles on evaluating colostrum quality. J. Dairy Sci. 98:595-601. https://doi.org/10.3168/jds.2014-8730

Morrow, D. A. 1976. Fat cow syndrome. J. Dairy Sci. 59:1625-1629. https://doi.org/10.3168/jds.S0022-0302(76)84415-3

Puppel, K., M. Gołębiewski, G. Grodkowski, P. Solarczyk, P. Kostusiak, M. Klopčič, & T. Sakowski. 2020. Use of somatic cell count as an indicator of colostrum quality. PLoS ONE 15:1-15. https://doi.org/10.1371/journal.pone.0237615

Quigley, J. D., A. Lago, C. Chapman, P. Erickson, & J. Polo. 2013. Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum.J. Dairy Sci. 96:1148-1155. https://doi.org/10.3168/jds.2012-5823

Shivley, C. B., J. Lombard, N. Urie, D. Haines, R. Sargent, C. Kopral, T. Earleywine, J. Olson, & F. Garry. 2018. Pre weaned heifer management on US dairy operations: Part II. Factors associated with colostrum quality and passive transfer status of dairy heifer calves. J. Dairy Sci. 101:9185-9198. https://doi.org/10.3168/jds.2017-14008

Silva-Del-Río, N., D. Rolle, A. García-Muñoz, S. Rodríguez Jiménez, A. Valldecabres, A. Lago, & P. Pandey. 2017. Colostrum immunoglobulin G concentration of multiparous Jersey cows at first and second milking is associated with parity, colostrum yield, and time of first milking, and can be estimated with Brix refractometry. J. Dairy Sci. 100:5774-5781. https://doi.org/10.3168/jds.2016-12394

Shoshoni, E., S. Rozen, & J. J. Doekes. 2014. Effect of a short dry period on milk yield and content, colostrum quality, fertility, and metabolic status of Holstein cows. J. Dairy Sci. 97:2909-2922. https://doi.org/10.3168/jds.2013-7733

Sutter, F., S. Borchardt, G. M. Schuenemann, E. Rauch, M. Erhard, & W. Heuwieser. 2019. Procedures after calving to improve harvesting of high-quantity and high-quality colostrum. J. Dairy Sci. 102: 9370-9381. https://doi.org/10.3168/jds.2019-16524

Turini, L., G. Conte, F. Bonelli, M. Sgorbini, A. Madrigali, & M. Mele. 2020. The relationship between colostrum quality, passive transfer of immunity and birth and weaning weight in neonatal calves. Livest. Sci. 238:1-4. https://doi.org/10.1016/j.livsci.2020.104033

Verweij, J. J., A. P. Koets, & S. W. F. Eisenberg. 2014. Effect of continuous milking on immunoglobulin concentrations in bovine colostrum. Vet. Immunol. Immunopathol. 160:225-229. https://doi.org/10.1016/j.vetimm.2014.05.008

Zentrich, E., M. Iwersen, M. C. Wiedrich, M. Drillich, & D. Klein-Jöbstl. 2019. Short communication: Effect of barn climate and management-related factors on bovine colostrum quality. J. Dairy Sci. 102:7453-7458. https://doi.org/10.3168/jds.2018-15645

Published
2021-08-19
How to Cite
Fahim, N. H., & Imbabi, T. A. (2021). Comparison between the Brix Refractometer and ELISA for Assessment of Colostrum IgG of Montbeliard x Holstein Cross Dairy Cows. Tropical Animal Science Journal, 44(3), 356-362. https://doi.org/10.5398/tasj.2021.44.3.356