Productivity, Nutrient Composition, and Hydrocyanic Acid Concentration of Super-2 Forage Sorghum at Different NPK Levels and Planting Spaces

D. Astuti, B. Suhartanto, N. Umami, A. Irawan


Low digestibility and toxicity of hydrocyanic acid (HCN) in sorghum forage are disadvantage for ruminant. Appropriate fertilizer application and planting strategy can improve sorghum yield and quality. A field experiment was aimed to investigate the productivity, nutrients content, and HCN concentration of Super-2 forage sorghum (Sorghum bicolor (L) Moench) at different planting spaces and levels of NPK fertilizer. The seeds were planted according to 3×3 factorial design in which the first factor was planting space (J1= 90×20 cm, J2= 75×25 cm, and J3= 60×30 cm) and the second factor was three levels of NPK fertilizer (P1= 0 kg/ha; P2= 100 kg/ha; and P3= 200 kg/ha, respectively). Crude protein (CP), crude fiber (CF), and HCN concentration were affected by the interaction of NPK levels × planting spaces (p<0.05). The CP and HCN content increased as NPK levels increased at all planting space patterns while CF content decreased. NPK fertilizer application significantly increased yield production (DM, OM, and CP productions), whereas planting space treatment did not show any improvement except for CF that significantly lower on 60×30 cm planting space. Sorghum receiving 200 kg/ha of NPK at 60×30 cm planting space produced the highest CP and the lowest CF content, resulting in the highest OM and CP biomass production. In conclusion, NPK fertilizer significantly improved productivity and nutrients composition and in the same way, also increased HCN concentration of sorghum Super-2 varieties.


Ali, H., B. Gul, M.Y. Adnan, M.Z. Ahmed, I. Aziz, S. Gulzar, R. Ansari, & M.A. Khan. 2014. NPK mediated improvement in biomass production, photosynthesis and Na+ regulation in panicum antidotale under saline conditions. Pak. J. Bot. 46: 1975-1979.

Almodares, A. & M.R. Hadi. 2009. Production of bioethanol from sweet sorghum: a review. Afr. J. Agr. Res. 4: 772-280. https://dx.doi:10.5897/AJAR

AOAC. 2005. Official methods of analysis. 16th ed. Arlington, VA: Association of Official Analytical Chemists, International.

Ardiansyah, K. G. Wiryawan, & P. D. M. H. Karti. 2016. Silage quality of sorghum harvested at different times and its combination with mixed legumes or concentrate evaluated in vitro. Med. Pet. 39: 53-60.

Arundale, R.A., F.G. Dohleman, T.B.Voigt & S.P Long. 2014. Nitrogen fertilization does significantly increase yields of stands of Miscanthus × giganteus and Panicum virgatum in multiyear trials in Illinois. Bioenergy Res. 7: 408–416. https://dx.doi:10.1007/s12155-013-9385-5

Assefa, G. & I. Ledin. 2001. Effect of variety, soil type and fertilizer on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in pure stands and mixtures. Anim. Feed Sci. Technol. 92: 95–111.

Ayub, M., M.A. Nadeem, M.S., Sharar, & N. Mahmood. 2002. Respons of maize (Zea mays L) fodder to different levels of nitrogen and phosporus. Asian J. Plant Sci. 1 : 352-354.

Bradbury, G.M., S.V. Egan & J.H. Bradbury. 1999. Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. J. Sci. Food Agric. 79: 593‒601.<593::AID-JSFA222>3.0.CO;2-2

Buah, S.S.J, J.M. Kombiok, & L.N. Abatania. 2012. Grain sorghum response to NPK fertilizer in the guinea savanna of ghana. J. Crop Improv. 26: 101–115.

Cameron, K.C., H.J. Di, & J.L. Moir. 2013. Nitrogen losses from the soil/plant system: A review. Ann. App. Biol. 162: 145–173.

Chaturvedi, I. 2005. Effect of nitrogen supply on growth, yield and quality of hybrid rice (Oryza sativa). J. Cent. Eur. Agric. 6: 611-618.

Choudhary, M. & G. Prabhu. 2016. Response of fodder oat (Avena sativa L.) varieties to irrigation and fertilizer gradient. Range Manag. Agrofor. 37: 201–206.

Fromme, D.D., C. J. Fernandez, W. J. Grichar, & R. L. Jahn. 2012. Grain sorghum response to hybrid, row spacing, and plant populations along the upper Texas Gulf Coast. Intl. J. Agro. 2012:1-5.

Hao, B., Q. Xue, B.W. Bean, W.L. Rooney, & J.D. Becker. 2014. Biomass production, water, and nitrogen use efficiency in photoperiod-sensitive sorghum in the Texas High Plains. Biomass Bioenergy. 62: 108–116. 01.008.

Hoffman, P.C., N.M. Esser, L.M. Bauman, S.L. Denzine, M. Engstrom, & H. Chester-Jones. 2014. Short communication: effect of dietary protein on growth and nitrogen balance of Holstein Heifers 1. J. Dairy Sci. 84: 843–847.

Kamal, M. 1997. Kontrol Kualitas Pakan. Fakultas Peternakan Universitas Gadjah Mada, Yogyakarta.

Karthika, N. & R. Kalpana. 2017. HCN content and forage yield of multi-cut forage sorghum under different organic manures and nitrogen levels. Chem. Sci. Rev. Lett. 6: 1659-1663.

Katterings, Q.M., G. Godwin, J.H. Cherney, & T.F. Kilcer. 2005. Potassium management for brown midrib sorghum x sudangrass as corn replacement for silage in north-eastern USA. J. Agr. Crop Sci. 119: 41-46.

Khan, Z.R., C.A.O. Midega, A. Hassanali, J.A. Pickett, & L.J. Wadhams. 2007. Assessment of different legumes for the control of Striga hermonthica in maize and sorghum. Crop Sci. 47: 730-734.

Kumar, M., M.L. Meena, S. Kumar, S. Maji, & D. Kumar. 2013. Effect of nitrogen, phosphorus and potassium fertilizers on the growth, yield and quality of tomato var. Azad T-6. Asian J. Hortic. 8:616-619.

Lee, M.S., A. Wycislo, J. Guo, D.K. Lee, & T. Voigt. 2017. Nitrogen fertilization effects on biomass production and yield components of Miscanthus × giganteus. Front. Plant Sci. 8: 544.

Li, W., J. Lu, S.P. Seneweera, F. Chen, J. Lu, & X. Li. 2010. Effect of fertilization on forage yield and quality, nutrients uptake and soil properties in the more intensive cropping system. J. Food Agric. Environ. 8: 427-434.

Liman, A.K. Wijaya, S. Tantalo, Muhtarudin, Septianingrum, W.P. Indriyanti, & K. Adhianto. 2018. Effect type and levels of manure on forage production and nutrient quality of sorghum (Sorghum bicolor (L.) Moennch) plant. Asian J. Crop Sci. 10: 115-120.

Marsalis, M.A., S.V. Angadi, & F.E. Contreas-Govea. 2010. Dry matter yield and nutritive value of corn, sweet sorghum, and BMR sweet sorghum at different plant populations and nitrogen rates. Field Crops Res. 116: 52-57.

Mohan, S., M. Singh, & R. Kumar. 2015. Effect of nitrogen, phosphorus and zinc fertilization on yield and quality of kharif fodderda review. Agric. Rev. 36: 218-226.

Purnomohadi, M. 2016. Peranan umur pemotongan dan pemupukan nitrogen terhadap mutu hijauan pakan sorgum manis (Sorghum bicolor L Moench). J. Med Ked. Hewan. 21: 155-158.

Puteri R.E., P. D. M. H. Karti, L. Abdullah, & Supriyanto. 2015. Productivity and nutrient quality of some sorghum mutant lines at differentcuting ages. Med. Pet. 38:132-137.

Rahman, M., S. Fukai, & F.P.C. Blamey. 2001. Forage production and nitrogen uptake of sweet sorghum, grain sorghum, and maize as affected by cutting under different nitrogen levels. Proceeding of 10th Australian Agronomy Conference.

Sawargaonkar, G.L., M.D. Patil, S.P. Wani, E. Pavani, B.V.S.R. Reddy, & S. Marimuthu. 2013. Nitrogen response and water use efficiency of sweet sorghum cultivars. Field Crop Res. 149: 245–251.

Shakeri, E., Y. Emam, S.A. Tabatabaei, & A.R. Sepaskhah. 2017. Evaluation of grain sorghum (Sorghum bicolor L.) lines/cultivars under salinity stress using tolerance indices. Intl. J. Plant Prod. 11: 101–115.

Sharifi, R.S., M. Sedhgi, & A. Gholipauri. 2009. Effect of population density on yield and yield attributes of maize hybrids. Res. J. Biol. Sci. 4: 375-379.

Sher, A., Md. Ansar, F.U. Hassan, G. Shabbir, & Md.A. Malik. 2012. Hydrocyanic acid content variation amongs sorghum cultivars was grown with varying seed rates and nitrogen levels. Intl. J. Agric. Biol. 14: 720-726.

Sher, A., M. Ansar, A. Manaf, A. Qayyum, M.F. Saeed, & M. Irfan. 2013. Hydrocyanic acid and sugar content dynamicsunder nitrogen and sulphur applicationto forage sorghum cultivars. Turkish J. Field Crops. 19: 46-52.

Singh, H., S. Pushpendra, & H.K. Sumerhya. 2008. Effect of fertility levels on fodder yield and HCN content of fodder sorghum (Sorghum bicolor (L.) Moench) genotypes. Intl. J. Trop. Agric. 26: 417-420.

Sriagtula, R., P.D.M.H. Karti, L. Abdullah, Supriyanto, & D.A. Astuti. 2016. Growth, biomass and nutrientproduction of brown midrib sorghum mutant lines at differentharvest times. Pak. J. Nutr. 15:524-531.

Sriagtula, R., P.D.M.H. Karti, L. Abdullah, Supriyanto, & D. A. Astuti. 2017. Nutrient changes and in vitro digestibility in generative stage of m10-bmr sorghum mutant lines. Med. Pet. 40: 111-117.

Subedi, K.D. & B.L. Ma. 2009. Assessment of some major yield-limiting factors on maize production in a humid temperate environment. Field Crop Res. 110: 21–26.

Wang, Z., Y. Miao, & S. Li. 2015. Effect of ammonium and nitrate nitrogen fertilizers on wheat yield in relation to accumulated nitrate at different depths of soil in drylands of China. Field Crop Res. 183: 211–224.

Zhang, S., A.S. Chaudhry, D. Ramdani, A. Osman, X. Guo, G.R. Edwards, & L. Cheng. 2016. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to foraging maize for silage making in Tarim Basin, China. J. Integr. Agr. 15: 175–182.


D. Astuti (Primary Contact)
B. Suhartanto
N. Umami
A. Irawan
AstutiD., SuhartantoB., UmamiN., & IrawanA. (2019). Productivity, Nutrient Composition, and Hydrocyanic Acid Concentration of Super-2 Forage Sorghum at Different NPK Levels and Planting Spaces. Tropical Animal Science Journal, 42(3), 189-195.

Article Details

List of Cited By :

Crossref logo